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We discuss the effects of non-independence on region of interest (ROI) analysis of functional magnetic resonance imaging data,
which has recently been raised in a prominent article by Vul et al. We outline the problem of non-independence, and use a
previously published dataset to examine the effects of non-independence. These analyses show that very strong correlations
(exceeding 0.8) can occur even when the ROI is completely independent of the data being analyzed, suggesting that the claims
of Vul et al. regarding the implausibility of these high correlations are incorrect. We conclude with some recommendations
to help limit the potential problems caused by non-independence.
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Rarely does a methodological review paper evoke the

kind of frenzy that occurred when the paper on ‘Voodoo

correlations in social neuroscience’ by Vul et al. (in press)

was released as a preprint.1 The blogosphere was soon

abuzz with discussions of its implications, and authors on

the ‘red list’ scrambled to write rejoinders to the piece and

defend their methods and previous findings to editors

and funding agencies. The discussion of this issue

even reached the pages of Newsweek (Begley 2009), which

reflects just how important functional magnetic resonance

imaging (fMRI) has become due to its prevalence in

the media.

In this article, we summarize the arguments of Vul et al.

and discuss the strengths and weaknesses of several strategies

to address the problem that their paper raises. We then

evaluate the impact of using non-independent region of

interest (ROI) analysis, using a published dataset that had

originally included such analyses. We find that the bias due

to using non-independent analysis is relatively small and

does not invalidate the claims of the paper, and certainly

does not support the dramatic label of ‘voodoo’. We note

up front that this does not necessarily imply that the

same holds for other papers that have used non-independent

analyses. We hope that others will also apply some of

the methods discussed here in order to determine the

degree of bias due to non-independence.

WHY ALL THE FUSS?
The basis for the argument by Vul et al. is simple

and statistically incontrovertible (also see Kriegeskorte

et al. 2009). Imagine a study in which one performs

a whole-brain analysis to find a correlation between a

personality test scores and brain activity across subjects,

and thresholds the resulting statistical map at an uncorrected

level of P < 0.05. However, a research assistant accidentally

reordered the list of personality scores, so that they bear no

true relation to brain activity. It is almost certain that some

voxels will make it through this disorganized data analysis

just by chance, even though there is no true relationship

between brain activity and test scores. If one were to then

take the signal from those surviving voxels and plot their

relationship with the test scores, it might look quite impress-

ive, but this is only because we have selected the voxels that

show the best relation to the scores by chance.

Vul et al. motivated their review by noting that a number

of studies in the social neuroscience literature reported

‘implausibly high’ correlations between brain activity and

behavior (i.e. > 0.8). They argued that it is rare for either

fMRI signals or behavioral measures to have reliability above

0.8; because the maximum observable correlation coefficient

is a function of the reliability of the measures being corre-

lated, this would suggest that correlations above 0.8 are

implausible. There are reasons to question the specific

reliability estimates cited by Vul et al. [e.g. in the study by
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Aron et al. (2006) we found that 1-year test-restest reliability

of fMRI signal estimates in regions of interest reached 0.99

in some cortical regions], but we will for the moment take

their point at face value.

Motivated by this concern, Vul et al. surveyed a large set

of papers from the social neuroscience literature, and then

asked the authors of those papers for details regarding how

the ROI analyses were performed. They then determined

which papers had employed non-independent analyses;

that is, analyses where the choice of voxels in the ROI

analysis is made using the results from the whole-brain

analysis, such as choosing the voxel with the maximum

statistical value or taking the mean of a significant cluster.

They compared the correlations obtained using these

analyses with those obtained using independent analyses,

e.g. using anatomical ROIs or independent localizer scans.

Their meta-analysis showed that the studies using non-

independent analyses reported correlations that were

substantially higher than those reported in studies using

independent ROI analyses. They conclude from this that

correlations between behavioral tests and brain activity

obtained using non-independent ROI analyses are not to

be believed. The specifics of their meta-analysis have been

called into question by Lieberman et al. in press, but the

point that non-independent analysis can lead to bias is not

in question.

INFERENCE VS PRESENTATION
The bias that is inherent in non-independent analyses would

be deeply troubling if these analyses were the basis for

the inferences reported in these papers. We suspect that

this sometimes may be the case, but in most studies, infer-

ence from fMRI data is made on the basis of whole-brain

voxelwise analyses. This inference can be plausible or not,

depending upon the methods that are used. In particular, it

is critical to employ accurate corrections for multiple tests,

since a large number of voxels will generally be significant

by chance if uncorrected statistics are used. An instruc-

tive example comes from Bennett et al. (2009). In a bit of

instructive humor, these investigators scanned a dead

salmon while showing it pictures of humans in social situa-

tions in a blocked design; the salmon was ‘asked’ to perform

an emotional judgment task. Using methods that are not

uncommon in the literature (i.e. an uncorrected threshold

of P < 0.001 and 2-voxel extent threshold), they found a

cluster within the salmon’s brain that appeared activated,

which disappeared upon using formal multiple comparison

procedures. The problem of multiple comparisons is well

known but unfortunately many journals still allow publica-

tion of results based on uncorrected whole-brain statistics.

There are well-developed and validated methods in the

literature for multiple test correction, including family wise

error (FWE) correction using Gaussian random field theory

or nonparametric methods, which control the probability

of having any false positives, and false discovery rate

(FDR) correction, which controls the fraction of rejections

that are false positives. Any statistic that passes an FWE or

FDR correction when properly applied is guaranteed to be

significantly different from the null value with a specific

error rate, and any inferences made on the basis of

those analyses are thus protected. If one then performs a

non-independent ROI analysis on the significant voxels

or clusters, the worst that can happen is that the observed

effect size will be inflated, making the observed effect appear

stronger than it actually is.2

Rather than using it for inference, when we have used

non-independent analyses, the goal has generally been to

examine the data that contributed to a significant correlation

for quality control, and to convince our readers that the

relationship observed in the data follows the expected func-

tional form and is not driven by outliers. In our experience,

correlations between fMRI signals and behavioral scores are

notoriously riddled with outliers, which can sometimes

result in very strong correlations that do not truly reflect

the pattern across the group. This problem is so prevalent

that we now try to use robust analyses whenever possible

(e.g. Wager et al., 2005; Woolrich, 2008), though there are

some cases where robust analyses may not be feasible. Thus,

we believe that whereas non-independent ROI analysis

should play no role in inference, it can and should play

a critical role as a sanity check for quality control. The

lack of a visible outlier certainly does not prove that a

result is robust, but the presence of a visible outlier can

suggest the need for further investigation.

INDEPENDENT ROI ANALYSIS
Although we have argued that there is a place for non-

independent ROI analysis, it is important to understand

how much bias is introduced by those analyses, and this

requires the parallel use of independent ROI analyses, in

which the selection of the ROI is made with no information

about the data being analyzed. As Vul et al. discuss, one

approach to solving the problem of non-independence is

to use ROIs that are either anatomically defined or defined

using a completely independent localizer scan. Anatomical

ROIs can certainly be useful, but they do pose some

problems for analysis of functional MRI data (cf. Poldrack,

2007). First, anatomical ROIs are often large, such that the

truly active voxels will make up a relatively small proportion

of any anatomical region. This means that purely anatomical

ROIs will almost always be biased towards the null

2 Studies often present results that are corrected using a ‘small volume correction’, in which the correction

is much less severe because a much small number of tests is corrected for. This is legitimate if the small

volume was identified completely independently of the data being analyzed. If the regions are chosen with

any knowledge of the results, then there is a potential for bias. Because of the severe potential for bias, we

are generally leery of the use of small volume corrections unless there is a clear regional prediction from

multiple previous studies, and the small volume being corrected for must be chosen in an independent

manner, e.g. using anatomically defined regions.
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hypothesis. Second, if one does not have a preexisting ana-

tomical hypothesis, then it is necessary to correct for a rela-

tively large number of tests (e.g. 110 regions in the

Harvard–Oxford Probabilistic Atlas that accompanies the

FMRIB Software Library, FSL), which will also reduce sensi-

tivity. The best solution is to obtain anatomical parcellations

for each individual and use those to perform the ROI ana-

lysis; recent developments in automated anatomical parcel-

lation (e.g. Fischl et al., 2002) make this feasible, but

such methods are not available in many centers and they

require some degree of expertise to use successfully. Thus,

anatomical ROIs may not be a suitable general solution to

the problem of regional interrogation.

The functional localizer approach has been used to very

good effect in visual neuroscience, and when available can

be very useful. However, the use of functional localizers

presupposes localization of function that is often not

present, e.g. for regions such as prefrontal cortex. Thus,

while very useful in some domains it also does not seem to

offer a general solution.

The approach preferred by Vul et al. is the use of split-half

or cross-validation strategies, wherein one portion of the

data from each subject are used to create an ROI that is

then used to interrogate the other portion of the data.

Although the within-subject time series noise is independent

across runs, the presence of any between-subject variance

will induce a correlation between runs, making this approach

non-independent. Examination of several datasets suggests

that between-subject variance is present even in regions that

are not activated, in which case the split half approach can

still overestimate the true effect. Another alternative is to

split the data across subjects, either splitting them into

two groups or using more sophisticated cross-validation

approaches. These approaches are in theory useful, but

they can be difficult to interpret since each split will have a

potentially different ROI. Additionally, both the split-runs

and split-groups approaches reduce the amount of data that

goes into the analysis, and thus increases the number of

subjects that must be scanned to reach the same level of

power (Poldrack and Mumford, 2009).

A CASE STUDY OF BIAS AND NON-INDEPENDENCE

In order to further examine the effects of non-independence,

we reanalyzed a dataset that we had previously published

including non-independent ROI analyses. Tom et al.

(2007) presented subjects on each trial with 50/50 gain/loss

gambles that parametrically varied the amount that could be

gained or lost, and asked them to decide whether they would

accept each gamble; the gambles were not resolved during

scanning. Analyses estimated the parametric response in

each voxel to gains and losses, and found that a set of regions

(including ventromedial prefrontal cortex and ventral

striatum) showed increasing activity for increasing possible

gains and decreasing activity for increasing possible losses.

Based on this analysis, we then computed a ‘neural loss

aversion’ parameter that was defined as the difference in

steepness between the (negative) slope of loss responses

and the (positive) slope of gain responses; a positive neural

loss aversion quotient reflected greater sensitivity to losses

vs gains in that voxel. We then computed an analogous

measure on behavioral data, and performed whole-brain

correlation analysis (using robust regression) to identify

voxels where there was a correlation across subjects between

neural and behavioral loss aversion, controlling FDR at

0.05 across the entire brain. This analysis identified a set of

clusters where such correlations were significant; the signal

within each of these clusters was averaged for each subject,

and these data were presented as scatterplots in the paper,

along with correlation coefficients and P-values from the

robust regression analysis. Thus, this was a non-independent

ROI analysis, and the correlations for some regions were in

the range (0.8–0.9) referred to as ‘implausible’ by Vul et al.

(Table 1). In retrospect, it was a mistake to present the

correlation and P-value numbers in the figure, as they are

certainly biased for the reasons that Vul et al. describe.

However, because we had controlled FDR at the whole-

brain level, which was the basis for our inference, we had

no undue concern about the true existence of that relation-

ship. Inspired by the paper of Vul et al., we wished to further

investigate how badly the effect size estimates were inflated

by the use of non-independent analysis.

Between-runs analysis
We first addressed the issue of bias by determining the ROIs

from a subset of scanning runs and testing them on another

subset. Because this study included three experimental runs

for each subject, this was possible. There were three different

Table 1 Original non-indepedent ROI analysis results from Supplementary
Table 2 of Tom et al. (2007)

Correlation Number of voxels Anatomical location

0.9 284 L inferior/middle frontal
0.88 175 R inferior/middle frontal
0.87 104 L inferior frontal (opercular)/anterior insula
0.86 122 R inferior frontal (opercular)
0.85 332 B ventral striatum
0.83 358 R inferior parietal
0.81 110 B pre-supplementary motor area
0.46 963 L lateral occipital/cerebellum

Regions were obtained from a whole-brain analysis with FDR¼ 0.05 and a 100-voxel
extent threshold. The first column presents the correlation between neural loss
aversion and the log of the behavioral loss aversion parameter; the second
column presents the size of the ROI and the third presents the anatomical location
of the ROI.
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stimulus lists that were counterbalanced in order across the

three scanning runs for each subject. For the purpose of the

leave-one-run-out analysis, runs were grouped by stimulus

list rather than by temporal order in the scanning session;

because there were no systematic differences in the stimuli

between the lists, this seemed appropriate. For each run,

a statistical map was first computed by performing a

whole-brain correlation analysis between behavioral

and neural loss aversion measures on the other two runs.

This map was thresholded at an uncorrected t� 2.3 and a

cluster extent of 200 voxels; we used this uncorrected thresh-

old because there were no voxels that passed a corrected

threshold for one of the training sets, and because the

split-half approach should in principle work even if the

training set is analyzed using an uncorrected threshold.

For each pair of training runs, we took all of the clusters

that passed this threshold and used them to create ROIs,

from which we then extracted and averaged the data from

the left-out run for each subject and computed the correla-

tion between this mean signal and the behavioral loss

aversion parameter. The results are presented in Table 2.

These results show that the mean bias across all leave-one-

out folds is 0.29; that is, the non-independent correlations

are on average 0.29 higher than the independent correla-

tions. All of the correlations in this analysis are somewhat

lower than those obtained in our non-independent analyses

reported in the paper, but still in a range (up to 0.77) that

would suggest substantial effects. However, as mentioned

above, the presence of non-zero between-subject variance

can cause voxels to be correlated across runs, and therefore

these values may still be biased. The next section used

anatomical ROIs, which completely avoid the non-

independence problem.

Anatomical ROIs
Another approach to independent ROI analysis is to extract

the data from anatomical ROIs, either defined by the sub-

ject’s own anatomy or using an anatomical atlas. We applied

this approach to the data from Tom et al., using the

Harvard–Oxford probabilistic anatomical atlas provided

with FSL. This atlas provides probabilities that each voxel

falls into a particular anatomical region across a dataset of

37 subjects. At each voxel, we assigned it to the most likely

region at each voxel, as long as it had a likelihood of 25% or

greater. For each subject, data were extracted from all voxels

in each region, and the mean signal in these voxels was

entered into a correlation analysis with the behavioral loss

aversion parameter. The P-values were corrected using

Bonferroni across all 111 regions; this is almost certainly

too conservative due to correlations between regions, but

we used it here to be maximally conservative.

Three regions exhibited correlations that reached

significance at a Bonferroni-corrected level (Table 3).

Table 2 ROI analysis using leave-one-out strategy, presented separately for each of the three left-out runs

Run 1 Run 2 Run 3

Voxels Test r Train r Voxels Test r Train r Voxels Test r Train r

257 0.563 0.761 216 0.558 0.872 216 0.558 0.872
276 0.228 0.783 304 0.676 0.767 304 0.676 0.767
311 0.486 0.760 377 0.606 0.788 377 0.606 0.788
331 0.473 0.875 473 0.724 0.85 473 0.724 0.850
346 0.614 0.827 590 0.766 0.812 590 0.766 0.812
492 0.329 0.861 698 0.466 0.810 698 0.466 0.81
498 0.470 0.793 806 0.677 0.822 806 0.677 0.822
634 0.551 0.825 829 0.728 0.845 829 0.728 0.845
711 0.666 0.787 1341 0.510 0.748 1341 0.510 0.748
1135 0.552 0.806 2151 0.282 0.808 2151 0.282 0.808

Bias 0.315 0.213 0.337

The columns include the number of voxels in the cluster, along with the correlation (Pearson r) between neural and behavioral loss aversion on the test (i.e. independent) and
training (non-independent) data, respectively. Bias (presented in the bottom row) is computed by subtracting the mean correlation for test (independent) data from the
correlation for training (non-independent) data across all clusters.

Table 3 Results from independent ROI analysis using anatomical ROIs

Correlation P-value Number
of voxels

Anatomical region

0.772 0.05 729 L Inferior Frontal Gyrus, pars opercularis
0.793 0.027 696 L Inferior Temporal Gyrus, temporooccipital part
0.820 0.011 655 R Inferior Frontal Gyrus, pars opercularis

Results are presented for the three regions with correlations that were P� .05 after
Bonferroni correction for the 111 regions tested. The first column presents the
correlation between the mean neural loss aversion signal within the ROI and the
behavioral loss aversion measure; the second column presents the corrected P-value;
the third column presents the number of voxels within the ROI and the fourth
presents the anatomical label.
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This procedure is likely suboptimal because it will make it

difficult to find correlations within large regions where the

correlation only occurs in a relatively small number of

voxels. Nonetheless, with a completely independent analysis

it is possible to find correlations in the 0.7–0.8 range, which

Vul et al. ruled to be implausible.

CONCLUSION AND RECOMMENDATIONS
Our analyses show that Vul et al. were correct that

non-independent ROI analyses result in bias, but incorrect

in their suggestion that correlations between behavior and

imaging data in the 0.7–0.8 range are ‘impossibly high’.

We would hasten to note that this does not necessarily

apply to other studies that have used non-independent

analysis, and we would encourage authors to reanalyze

their data, especially if the regions were derived using

uncorrected whole-brain maps.

We have a number of recommendations that we hope will

strengthen the results of any fMRI study and ensure that the

resulting inferences are not impeachable on the grounds

of bias:

(1) Strict control for multiple comparisons should always

be employed. This will certainly reduce power and

require larger sample sizes, but the alternative of inflated

Type I error is unacceptable. There are a number of

standard methods that are widely available for con-

trol of FWE, including Gaussian random field theory

(Worsley et al. 1992) and non-parametric permutation

testing (Nichols and Holmes, 2002), as well as methods

for control of FDR (Genovese et al., 2002) (though see

Chumbley & Friston, 2009). We are generally suspicious

of the use of small volume correction because of the

potential for bias due to the selection of correction

volumes once one has knowledge of the data. If one

wishes to use a small volume correction approach, then

one should choose those ROIs before any data analysis

has been performed.

(2) Robust statistical methods should be used whenever

possible, though they are not yet widely available. One

notable exception is the outlier rejection method that

is now available within the FSL software package

(Woolrich, 2008). It is also possible to use the robust

methods available in standard software such as MATLAB

or R to obtain voxel-wise robust statistical estimates,

but this can be cumbersome to implement.

(3) We believe that it is important to visualize the data

that are driving an effect, using non-independent ROI

analysis as a quality control step. Lack of an apparent

artifact does not guarantee that the data are not

corrupted, but problems can often be spotted by

visualization of data in this manner. We recommend

that these figures not be presented in publications due

to their potential for misrepresenting the strength of the

effect, but that they be included in Supplementary

Materials for reviewers and interested readers.

(4) If one wishes to compute statistics from a ROI or present

correlations in a figure within a paper, then independent

analyses should be used. This can be done through the

use of anatomically defined regions or though split-half

analyses, in which part of the data are used to create the

regions of interest through whole-brain analysis, and

the other half is used to estimate the signal within

those regions. In the case of split-half analyses, to com-

pletely avoid any correlations induced by the between-

subject variability, the data should be split over subjects,

not over runs. However, it should be noted that this

approach causes a reduction in power and significant

activation may be missed. Again, it is critical to point

out that any anatomical regions of interest must be

chosen prior to analyzing the data; otherwise, all regions

should be analyzed and correction for multiple compar-

isons applied across those analyses.

(5) Whatever analyses are performed should be described

in detail in the methods section or Supplementary

Materials (cf. Poldrack et al., 2008). One of the most

worrisome aspects of the paper of Vul et al. is the

difficulty that they encountered in determining how

each analysis was performed; it should not be necessary

to send a questionnaire to the authors in order to

determine how an analysis was performed.

We believe that the paper by Vul et al., despite its

shortcomings, has done a service to the fMRI community

by highlighting the need for methdological care and the

potential for bias that can arise with some forms of analysis.

We hope that the field will take these lessons to heart and

ensure that fMRI results are never again open to the claim of

voodoo.

SUPPLEMENTARY DATA
Supplementary data are available at SCAN online.
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